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Quasinormal Distributions 
and Expansion at the Mode 
Y u k i o  T o m o z a w a  1 
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The Gram-Charlier series of type A is discussed in terms of deviants which 
are related to moments in a way similar to the way Hermite polynomials are 
related to the powers. Distribution functions are also expressed in terms of 
the mode and moments (cumulants or deviants), which are useful expan- 
sions when the distributions are approximately normal. It is shown that 
such expansions as well as the Gram-Charlier series are valid asymptotically 
for discrete distributions defined on the semiinfinite interval [0, m]. 

KEY W O R D S  : Gram-Charlier series of type A ;  mode;  moments; cumu- 
lants ; deviants ; quasinormal expansion. 

1. INTRODUCTION 

It  is an interesting mathemat ical  problem to express dis t r ibut ion functions in 

terms of various moments  or cumulants .  The Gr a m- C ha r l i e r  (GC) series ~1~ 

of type A is one of the solutions which is useful if the dis tr ibut ion is approxi-  

mately normal  (Gaussian).  C2,3~ One of the characteristics of such a distribu- 

t i o n - w h i c h  we may call a quasinormal distribution--is that it has a unique  
maximum,  the so-called mode. In this paper we will show that knowledge of 

the mode enables us to derive a useful expansion for the dis t r ibut ion function.  
The G C  series and the expansion a round  the mode are obtained for a 

cont inuous  dis t r ibut ion in the range [ -  ~ ,  ~ ] .  In physics problems, however, 
we often encounter  discrete dis tr ibut ions which are defined in the range 
[0, ~ ] .  For  example, the cross sections an for producing extra n particles in 
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high-energy collision are defined for the multiplicity n - - 0 ,  1, 2 ..... A 
characteristic feature of the experimental data on multiplicity distributions is 
that they are quasinormal (4-8) and the mode and the width become larger 
as the energy increases. It appears, therefore, that the expansions which we 
mentioned earlier are useful for these problems, at least in an asymptotic 
sense. We shall show that this is indeed the case and shall describe the 
condition for the validity of the asymptotic expansions. 

In Section 2 the GC series for distributions defined in the range [ -09 ,  09] 
is discussed by introducing deviants, which are functions of moments or 
cumulants. It is pointed out that the relationship between the deviants and 
the moments is similar to that between the Hermite polynomials and the 
powers. Section 3 deals with expansions at the mode, and Section 4 deals with 
the problem of discrete distributions in the semiinfinite range. 

2. D E V I A N T S  A N D  T H E  G R A M - C H A R L I E R  SERIES 

Moments/~k and cumulants K~ for a distribution function f ( x )  normal- 
ized in the range - 0 9  < x < 09 are defined through the characteristic 
function (c.f.) 

where 

f r  ---- eUXf(x) dx  (1) 
o0 

= ~ t~k(it)~ [ ~- Kk(it) k] 
~=o 1,! = e x p [ ~ - - i - - . '  l (2) 

-[  (3) = e~Ux t 1 + k I J 
k ~ 2  

F t~(a)  = (x  - a) k = (x  - a ) k f ( x ) d x  (4) 
o0 

~ = r e ( g )  - 3 [ ~ 2 ( ~ ) ]  2, 

denotes the kth moment around a point a, and 

Cumulants are related to moments: 

~1 = ~1  = ~ ,  K2 = ~ 2 ( ~ ) ,  K3 = m ( ~ ) ,  

( 5 )  

etc. 
(6) 
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I t  is convenient  for  our  purpose  to in t roduce deviants 2 A~ (k >1 3) by 

r {exp[ix~t + ~ ] } [ 1  + ~ ~'(it)~] k=3 ~ ]  (7) 

<, , -%[ exp[v   + 1 + (8) 

where 

and  

Since the c.f. 

= ~/~-~2 t (9) 

% = A~/~ (lo) 

r  = exp[&lt  + �89 2] 

corresponds  to the normal  distr ibution 

1 ~ x2(it) 2 . 
f (x)  = ~-g~ f_~  <exp[&lt + ~ ] } e x p ( - , t x ) d t  

( 1 0  

1 (x  - .1 )  2 (12) 
- (21r~2)1/2 exp 2~2 

deviants Ak or /~k give the measure  of  deviat ion f rom the normal  distr ibution 
(as do the cumulants  K~, k >/ 3). Deviants  are related to momen t s  and cumu-  
lants in the following way:  

a,  = ~, = ~ (X)  - 3[t~2(X)] 2 (13) 
a5 = ~5 = m ( ~ )  - 1 0 m ( x ) t , 2 ( x )  

and 

tk/2] ( _ 1)%2z/zk_ 21(2) 
I k = k !  ~,  , k /> 3 (14) 

z=o 2 q ! ( k - 2 / ) !  

k ! ~ KkzKk 2 
= ~ k + T . v  k,~a k l ! k 2 !  

k l + k 2  =h: 

k~ KRtKk2 Kk 3 
k /> 3 (15) 

+ 3 -5  ~ k l ~ k 2 ! k a T  + ' ' ' '  
�9 ] q ~ 3  " " 

2 This name was suggested by G. West. 
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Using Eq. (10) and similar notation (~k = Kk/K~/z, etc.), we may rewrite 
Eqs. (14) and (15) as 

L = k! ( -  k /> 3 (16) 

k ! x-" ~ k ~  
= ~ k + ~  k~@a kl!k2! 

k l + k 2 = 3  

k! ~kl~k2~ka k ) 3 (17) 
+~. ~ klTk~!kaV +'", 

k ~ > 3  �9 , 

We notice that in Eqs. (14) and (16) we have the identity 

r e ( x )  = : o ( i 8 )  

by definition, and that the series in Eqs. (15) and (17) terminates with the 
[k/3]th sum. The inverse of Eq. (16) is given by 

tk/a ~k-2z (19) 
#k(x) = k! ~ 2'l! ~ --- 2l) '  

Z=O 

with the constraints 

~1 = ~ 2 - 0  (20) 

With these preparations we express the distribution function f(x) in 
terms of deviants: Using Eqs. (1), (8), and (9) and defining 

z = (x - ~1)/~/~ (21) 

we obtain 

f(x) = ~ e-'tx4,(t) dt (22) 

= ( 1  2 ;~(-~(dz)~) 1 ~~ 

- (27rK2)1/2 1 + exp - ~ -  (23) 
k = 3  

where the identity of the Hermite polynomial 

(d) ~ z 2 z ~ 

~zz exp - ~ -  = ( -  1)kHk(z) exp 2 (24) 

has been used. Equation (23) is the Gram-Charlier series of type A. 
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We point out that the reciprocal relation between moments and deviants, 
Eqs. (16) and (19), resembles that between the powers and the Hermite 
polynomials 

Ek/UJ ( lyzk-U, 
H k ( z )  = k! ,=~o 2'~(---~: ~ ) !  (25) 

and 

z k = k ! ~ 2' l i-~--- 2l) ! (26) 
l=O 

which follows from the generating function 

exp t z  - = j ! (27) 
] = 0  

The only difference is that in the former the first few terms of moments and 
deviants are missing by definition [Eqs. (8) and (20)]. Using gqs. (25), we 
recast the GC series into the form 

f ( x )  = (2rr~2)~/2 exp - k=o k! (28) 

where 

~o = 1 + 4!7 6!! + 8T~. ~ ' ~1 = -2~--77 + 4!!  6!! 

and 

and 

~2 = - + 4 !7 6 ! ! + ""' ~a = Aa - + 41--77. v . . . .  

N' ( -1 ) t  '~2z+~, k ~> 3 
~k = ,=/=o (2l) !! 

Finally we note the further relations 

f [" K1 "(t-~)2] } ~ _~o ~k/~Hk(t) r = exp z ~ +  k! 

-~- , ~ 1 7 6  

(29) 

(30) 

(31) 

2-z2 .k (.d)~zz 2-z2 k /1 dX 2-z2 z k exp - = t Hk_ _ t  exp -- = i - Hk [7 dzz) exp - (32) 

which are reciprocal to Eqs. (8) and (24), respectively. Equation (31) can be 
obtained from Eqs. (8) and (26), and Eq. (32) is the Fourier transform of 
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Eq. (24). From Eqs. (22), (31), and (32) it follows that 

f (x)  = ~ r d/dz) 1 z 2 
~=o k ! (2)rxg.)f7 ~ exp 2 

1 ~ '  17~z ~c z ~ 
(2rr~:2) 1/2 k=o ~ ~ exp 2 

which is identical to Eq. (28). 

(33) 

3. M O D E  A N D  Q U A S I N O R M A L  E X P A N S I O N  

The mode m is the stationary point of distribution functions and is 
determined as the solution of the equation 

ff 
k! zk=~' o k! 

= ~1 + (~2 - ,~6)z + - ~1 z 2 + ... + \ k ! ( k  - 1) ! 1 -  

= 0 (34) 

This can be solved only if a few terms in the series are important, or if Eq. 
(34) is summable in a compact form. The former case was discussed in 
Refs. 2, 3, and 9 (also see Ref. 1, Section 6.25). In this paper, instead, we 
consider the case where the mode is known. This simplifies the problem 
enormously as far as a formal manipulation is concerned, as will be seen 
below. 

In terms of the mode, we anticipate the expansion 

1 [ (x -- m)2] [l  + "~ a - - - ~ ( ~ - ) k ]  (35a) 
f (x)  = (2=)1/2/3 exp 272 J k=z-z.a k ! 

1 ~" bk 

These expansion formulas were discussed previously (a) for the Poisson dis- 
tribution and temperate correlation models which are characterized by the 
condition 

where 

~ = O(ek-2), k /> 3 (36) 

E < < I  

In the latter case we can prove that (a) 

aa = O(e), 

(37) 

a4,6 = 0 ( , ~ ) ,  a31-4 ,a , -2 ,~ ,  = o ( , ~ ) ,  l 1> 3 (38)  
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and 

bk = O(E~-2), k /> 3 (39) 

Thus the coefficients of higher powers in ( x  - m ) / 7  are successively smaller. 
The distribution clearly exhibits a quasinormal behavior. The mode and the 
width are also calculated (2'a) as expansions in 

m = K~ - �89 + 0(E2)] (40) 

and 

y = ~/~[1 + O(e2)] (41) 

The aim of this section is to derive expansion formulas (35) in a more general 
c a s e .  

Assuming that the mode m is already known, the width may be computed 
by tile formula 

[ 1[1 Z~=~ ~ (42) 1 = c ~2 lnf(x)  = ~ + zm 2 _ 
yz  cgx 2 x = m ~ = o (~kZmk/k !) l 

where 

z m = ( m  - ~ ) /~ / -~2  (43) 

In order to compute the other parameters in the expansion formulas (35) it 
would be more convenient to use the expansion of the c.f. 

where 

and 

( ~ ( t ) = { e x p [ i m t +  ~ ] } [ 1  + k=l ~ ~:k(it)k]k[ J (44) 

= { e x p [ i ~ f +  ( ~ ] } [ 1  + ~=12 ~ ] .  (45) 

[k12] 
~:~ = k ' ~ ( -  1)'72't%-2~(m) 

1=o g'KK -~7~i 
[k/2] 

t=0 2~/[-( -~ Z F)~ 

= 7t  

Ck = ~k/7 k, f~k = tL~/7 k, etc. 

(46) 

(47) 

(48) 

(49) 

t~o(m) = sCo = 1 (50) 
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It is obvious that we have the relation reciprocal to Eq. (47) which is similar 
to Eq. (26), 

/~k(m) = k!  ~ z (51) 
l=o 211 ! 20 ! 

An alternative expression of the c.f. which is analogous to Eq. (31) is 
given by 

r = exp i t + r (52) 
k!  

where the identity (26) was used, and ~ is related to ~k by 

9o = 1 + 
( -  1) z 

,=z ~ ~2z (53) 

~k = ~ ~ ~:2t+k, k /> 1 (54) 
/ = 0  

As was done previously, the distribution function is obtained as the Fourier 
transform of Eq. (52), 

r d/dy) 1 y2 
f ( x )  = ~ k v (27r)lj2~, exp k=0 �9 2 

1 ~ ,  ~ y k  y2 
- (27r)~z ~ /_~ ~ exp (55) 

~=0 2 

where 
y = (x - m)/? (56) 

From the fact that m is the mode and y is the width, it follows that 

~1 = ' h  = 0 (57) 

and Eq. (55) can be written in the form (35a) with the parameter 

/~ = ~,/~o ( 5 8 )  
and 

a~ = ~k/~o, k >i 3 (59) 

The coefficients bk in Eq. (35b) can be expressed in terms of a~ and vice versa: 

k ! aklak2 + k ! a~lak2ak3 (60) 
b ~ = a ~  2 ~ k l ' k 2  "-'------~ --5" ~" k l ' k 2 ! k a '  

k i > 3  �9 . / c i>  3 �9 . 
k l + / r  = / r  k l  + / c 2 +  k 3  =/~  

and 

k ! b~bk~ k I bk~bk~bk~ 
a k = b ~ + ~ .  ~ kl,k2-------5+-- ~ + . . .  (61) k~a 3 T kl [ k2 T kav 

�9 . , k ~ . > _ 3  �9 . 

kl+k2=k kl+~2+~3=k 



Quasinormal Distributions and Expansion at the Mode 203 

The series in Eqs. (60) and (61) terminates with the [k/3]th sum as in Eq. (17). 
This completes the formal derivation of the quasinormal expansion, Eqs. (35). 
Needless to say, such expansions are most effective if a~ or bk decreases very 
quickly as k --+ ~ .  

4. D I S C R E T E  D I S T R I B U T I O N  IN T H E  S E I V I I I N F I N I T E  R A N G E  3 

For a discrete distribution P~ which is normalized by 

P,  ~ 1 (62) 
n = 0  

we proceed in a way similar to the preceding sections. The c.f. is defined by 

r = ~ e~"tP,~ (63) 
n = O  

and most of the formulas concerning the moments, cumulants, deviants, and 
the like, are valid also in this case except that the integral in x is replaced by 
the sum over n. For example, the moments are given by 

izk(a) = (n - a) k = ~ (n - a)kP~ (64) 
n = O  

Using Eqs. (8)-(10) and (31), we invert Eq. (63) to obtain 

e .  = ~ j_  ~ e-'"'r dt 

k=3 1 - - - - ~ ( : ~ ' / ~ e x p ( - i z T - ~ ) d ~  (65) 

=0 k ! 27rV'~ J-,,/7= exp - izf - dg (66) 

where 

z = (n - K1)/~/~ (67) 

The integral in the above equations is 

1 ( e x p _ _ ~ ) f  ~'&~ [ 1 iz)2 ] (68) x(n) - 2~ra/~ ~_~, /~exPL-z  ( '  + d, 

t('2 112 

_ (27rtc2) 1 /21  (exp _ ~ )  RefErf[~r(_~) (1 + i(n--_K1)]]'~~r~c2 / J )  (69) 

3 The basic argument in this section is the same as in Ref. 3. We present it for complete- 
ness to include the case of the general expansion formula discussed in the previous 
sections. 
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where the error function and its asymptotic form are given by 

Eft(u) -=- exp - t 2 d t  (70) 

1 exp -u2 [ 0 ( 1 ) ]  
.-.oo 1 + (71)  .... , I ~ / g  . p 

In the limit K2 ~ 0% therefore, we get the asymptotic expression for x(n) 

x(n) -----+ exp - 
~ - . ~  (2~K2)1/~ 

n - -  K 1 2 

The second term in the outside curly braces of Eq. (72) is negligible in the limit 
~2 ---> 0% provided 

I(n - ~ 1 ) / ~ 1  < ,~ (73)  

Hence, Eqs. (65) and (66) coincide with Eqs. (23) and (33) asymptotically. 
It is easy to see also that the asymptotic expansion 

P n = ~  exp 2~,2 ] 1 + ~=a~-v 

x { 1 +  O(~,-1 exp{--~ [~r 2 -  (~-5-m)21})] (74) 

x { 1 +  0(7, -1 exp{--~ [rr 2 -  (~-5--~)2]})} (75) 

is valid in the limit ~ --> 0% provided the condition 

I ( .  - m)h'21 < " (76) 

is satisfied. The formulas expressing the parameters of the asymptotic ex- 
pansions (74) and (75) in terms of the mode and the moments are identical 
to those in Section 3. 
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